An algorithmically random family of MultiAspect Graphs and its topological properties
This article presents a theoretical investigation of incompressibility and randomness in generalized representations of graphs along with its implications on network topological properties. We extend previous studies on plain algorithmically random classical graphs to plain and prefix algorithmically random MultiAspect Graphs (MAGs). First, we show that there is an infinite recursively labeled infinite family of nested MAGs (or, as a particular case, of nested classical graphs) that behaves like (and is determined by) an algorithmically random real number. Then, we study some of their important topological properties, in particular, vertex degree, connectivity, diameter, and rigidity.
READ FULL TEXT