An almost optimal bound on the number of intersections of two simple polygons

02/13/2020
by   Eyal Ackerman, et al.
0

What is the maximum number of intersections of the boundaries of a simple m-gon and a simple n-gon, assuming general position? This is a basic question in combinatorial geometry, and the answer is easy if at least one of m and n is even: If both m and n are even, then every pair of sides may cross and so the answer is mn. If exactly one polygon, say the n-gon, has an odd number of sides, it can intersect each side of the m-gon at most n-1 times; hence there are at most mn-m intersections. It is not hard to construct examples that meet these bounds. If both m and n are odd, the best known construction has mn-(m+n)+3 intersections, and it is conjectured that this is the maximum. However, the best known upper bound is only mn-(m + ⌈n/6⌉), for m ≥ n. We prove a new upper bound of mn-(m+n)+C for some constant C, which is optimal apart from the value of C.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro