An Auto-Regressive Formulation for Smoothing and Moving Mean with Exponentially Tapered Windows
We investigate an auto-regressive formulation for the problem of smoothing time-series by manipulating the inherent objective function of the traditional moving mean smoothers. Not only the auto-regressive smoothers enforce a higher degree of smoothing, they are just as efficient as the traditional moving means and can be optimized accordingly with respect to the input dataset. Interestingly, the auto-regressive models result in moving means with exponentially tapered windows.
READ FULL TEXT