An Axiomatic Approach to Liveness for Differential Equations

04/16/2019
by   Yong Kiam Tan, et al.
0

This paper presents an approach for deductive liveness verification for ordinary differential equations (ODEs) with differential dynamic logic. Numerous subtleties prevent the generalization of well-known discrete liveness verification techniques, such as loop variants, to the continuous setting. For example, ODE solutions rarely exist in closed-form, they may blow up in finite time, or their progress towards the goal may converge to zero. Our approach handles these subtleties by successively refining ODE liveness properties using ODE invariance properties which have a well-understood deductive proof theory. This approach is widely applicable: we survey several liveness arguments in the literature and derive them as special instances of our axiomatic refinement approach. We also correct several soundness errors in the surveyed arguments, which further highlights the subtlety of ODE liveness reasoning and the utility of our deductive approach. The library of common refinement steps identified through our approach enables both the sound development and justification of new ODE liveness proof rules from our axioms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset