An Efficient Doubly-Robust Test for the Kernel Treatment Effect

04/26/2023
by   Diego Martinez-Taboada, et al.
0

The average treatment effect, which is the difference in expectation of the counterfactuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects beyond the mean, for instance decreasing or increasing the variance. We propose a new kernel-based test for distributional effects of the treatment. It is, to the best of our knowledge, the first kernel-based, doubly-robust test with provably valid type-I error. Furthermore, our proposed algorithm is efficient, avoiding the use of permutations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset