An efficient FV-based Virtual Boundary Method for the simulation of fluid-solid interaction
In this work, the Immersed Boundary Method (IBM) with feedback forcing introduced by Goldstein et al. (1993) and often referred in the literature as the Virtual Boundary Method (VBM), is addressed. The VBM has been extensively applied both within a Spectral and a Finite Difference (FD) framework. Here, we propose to combine the VBM with a computationally efficient Finite Volume (FV) method. We will show that for similar computational configurations, FV and FD methods provide significantly different results. Furthermore, we propose to modify the standard feedback forcing scheme, based on a Proportional-Integral (PI) controller, with the introduction of a derivative action, in order to obtain a Proportial-Integral-Derivative (PID) controller. The stability analysis for the Backward Differentiation Formula of order 1 (BDF1) time scheme is modified accordingly, and extended to the Backward Differentiation Formula of order 2 (BDF2) time scheme. We will show that, for the BDF2 time scheme, the derivative action allows to improve the stability characteristics of the system. Our approach is validated against numerical data available in the literature for a stationary/rigidly moving 2D circular cylinder in several configurations. Finally, a Fluid-Structure Interaction (FSI) benchmark, related to the frequency response of a cantilever beam coupled with a fluid, is presented: we numerically demonstrate that the introduction of the derivative action plays an important role in order to properly detect the fluid-structure interaction coupling.
READ FULL TEXT