An Empirical Study on Bug Severity Estimation Using Source Code Metrics and Static Analysis
In the past couple of decades, significant research efforts are devoted to the prediction of software bugs (i.e., defects). These works leverage a diverse set of metrics, tools, and techniques to predict which classes, methods, lines, or commits are buggy. However, most existing work in this domain treats all bugs the same, which is not the case in practice. The more severe the bugs the higher their consequences. Therefore, it is important for a defect prediction method to estimate the severity of the identified bugs, so that the higher severity ones get immediate attention. In this paper, we provide a quantitative and qualitative study on two popular datasets (Defects4J and Bugs.jar), using 10 common source code metrics, and also two popular static analysis tools (SpotBugs and Infer) for analyzing their capability in predicting defects and their severity. We studied 3,358 buggy methods with different severity labels from 19 Java open-source projects. Results show that although code metrics are powerful in predicting the buggy code (Lines of the Code, Maintainable Index, FanOut, and Effort metrics are the best), they cannot estimate the severity level of the bugs. In addition, we observed that static analysis tools have weak performance in both predicting bugs (F1 score range of 3.1 their severity label (F1 score under 2 characteristics of the severe bugs to identify possible reasons behind the weak performance of code metrics and static analysis tools in estimating the severity. Also, our categorization shows that Security bugs have high severity in most cases while Edge/Boundary faults have low severity. Finally, we show that code metrics and static analysis methods can be complementary in terms of estimating bug severity.
READ FULL TEXT