An EPTAS for Budgeted Matroid Independent Set
We consider the budgeted matroid independent set problem. The input is a ground set, where each element has a cost and a non-negative profit, along with a matroid over the elements and a budget. The goal is to select a subset of elements which maximizes the total profit subject to the matroid and budget constraints. Several well known special cases, where we have, e.g., a uniform matroid and a budget, or no matroid constraint (i.e., the classic knapsack problem), admit a fully polynomial-time approximation scheme (FPTAS). In contrast, already a slight generalization to the multi-budgeted matroid independent set problem has a PTAS but does not admit an efficient polynomial-time approximation scheme (EPTAS). This implies a PTAS for our problem, which is the best known result prior to this work. Our main contribution is an EPTAS for the budgeted matroid independent set problem. A key idea of the scheme is to find a representative set for the instance, whose cardinality depends solely on 1/ε, where ε > 0 is the accuracy parameter of the scheme. The representative set is identified via matroid basis minimization, which can be solved by a simple greedy algorithm. Our scheme enumerates over subsets of the representative set and extends each subset using a linear program. The notion of representative sets may be useful in solving other variants of the budgeted matroid independent set problem.
READ FULL TEXT