An estimator for predictive regression: reliable inference for financial economics
Estimating linear regression using least squares and reporting robust standard errors is very common in financial economics, and indeed, much of the social sciences and elsewhere. For thick tailed predictors under heteroskedasticity this recipe for inference performs poorly, sometimes dramatically so. Here, we develop an alternative approach which delivers an unbiased, consistent and asymptotically normal estimator so long as the means of the outcome and predictors are finite. The new method has standard errors under heteroskedasticity which are easy to reliably estimate and tests which are close to their nominal size. The procedure works well in simulations and in an empirical exercise. An extension is given to quantile regression.
READ FULL TEXT