An Event Detection Approach Based On Twitter Hashtags

04/02/2018
by   Shih-Feng Yang, et al.
0

Twitter is one of the most popular microblogging services in the world. The great amount of information within Twitter makes it an important information channel for people to learn and share news. Twitter hashtag is an popular feature that can be viewed as human-labeled information which people use to identify the topic of a tweet. Many researchers have proposed event-detection approaches that can monitor Twitter data and determine whether special events, such as accidents, extreme weather, earthquakes, or crimes take place. Although many approaches use hashtags as one of their features, few of them explicitly focus on the effectiveness of using hashtags on event detection. In this study, we proposed an event detection approach that utilizes hashtags in tweets. We adopted the feature extraction used in STREAMCUBE and applied a clustering K-means approach to it. The experiments demonstrated that the K-means approach performed better than STREAMCUBE in the clustering results. A discussion on optimal K values for the K-means approach is also provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset