An Introduction to Communication Efficient Edge Machine Learning

12/03/2019
by   Qiao Lan, et al.
0

In the near future, Internet-of-Things (IoT) is expected to connect billions of devices (e.g., smartphones and sensors), which generate massive real-time data at the network edge. Intelligence can be distilled from the data to support next-generation AI-powered applications, which is called edge machine learning. One challenge faced by edge learning is the communication bottleneck, which is caused by the transmission of high-dimensional data from many edge devices to edge servers for learning. Traditional wireless techniques focusing only on efficient radio access are ineffective in tackling the challenge. Solutions should be based on a new approach that seamlessly integrates communication and computation. This has led to the emergence of a new cross-disciplinary paradigm called communication efficient edge learning. The main theme in the area is to design new communication techniques and protocols for efficient implementation of different distributed learning frameworks (i.e., federated learning) in wireless networks. This article provides an overview of the emerging area by introducing new design principles, discussing promising research opportunities, and providing design examples based on recent work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset