An Ontology-based Approach to Explaining Artificial Neural Networks

06/19/2019
by   Roberto Confalonieri, et al.
0

Explainability in Artificial Intelligence has been revived as a topic of active research by the need of conveying safety and trust to users in the `how' and `why' of automated decision-making. Whilst a plethora of approaches have been developed for post-hoc explainability, only a few focus on how to use domain knowledge, and how this influences the understandability of an explanation from the users' perspective. In this paper we show how ontologies help the understandability of interpretable machine learning models, such as decision trees. In particular, we build on Trepan, an algorithm that explains artificial neural networks by means of decision trees, and we extend it to include ontologies modeling domain knowledge in the process of generating explanations. We present the results of a user study that measures the understandability of decision trees in domains where explanations are critical, namely, in finance and medicine. Our study shows that decision trees taking into account domain knowledge during generation are more understandable than those generated without the use of ontologies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset