An Operator-Splitting Finite Element Method for the Numerical Solution of Radiative Transfer Equation

12/15/2021
by   Sashikumaar Ganesan, et al.
0

An operator-splitting finite element scheme for the time-dependent, high-dimensional radiative transfer equation is presented in this paper. The streamline upwind Petrov-Galerkin finite element method and discontinuous Galerkin finite element method are used for the spatial-angular discretization of the radiative transfer equation, whereas the implicit backward Euler scheme is used for temporal discretization. Error analysis of the proposed numerical scheme for the fully discrete radiative transfer equation is presented. The stability and convergence estimates for the fully discrete problem are derived. Moreover, an operator-splitting algorithm for numerical simulation of high-dimensional equations is also presented. The validation of the derived estimates and implementation is demonstrated with appropriate numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset