An Optimality Proof for the PairDiff operator for Representing Relations between Words

09/19/2017
by   Huda Hakami, et al.
0

Representing the semantic relations that exist between two given words (or entities) is an important first step in a wide-range of NLP applications such as analogical reasoning, knowledge base completion and relational information retrieval. A simple, yet surprisingly accurate method for representing a relation between two words is to compute the vector offset () between the corresponding word embeddings. Despite its empirical success, it remains unclear whether is the best operator for obtaining a relational representation from word embeddings. In this paper, we conduct a theoretical analysis of the operator. In particular, we show that for word embeddings where cross-dimensional correlations are zero, is the only bilinear operator that can minimise the ℓ_2 loss between analogous word-pairs. We experimentally show that for word embedding created using a broad range of methods, the cross-dimensional correlations in word embeddings are approximately zero, demonstrating the general applicability of our theoretical result. Moreover, we empirically verify the implications of the proven theoretical result in a series of experiments where we repeatedly discover as the best bilinear operator for representing semantic relations between words in several benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset