An optimization method for out-of-distribution anomaly detection models
Frequent false alarms impede the promotion of unsupervised anomaly detection algorithms in industrial applications. Potential characteristics of false alarms depending on the trained detector are revealed by investigating density probability distributions of prediction scores in the out-of-distribution anomaly detection tasks. An SVM-based classifier is exploited as a post-processing module to identify false alarms from the anomaly map at the object level. Besides, a sample synthesis strategy is devised to incorporate fuzzy prior knowledge on the specific application in the anomaly-free training dataset. Experimental results illustrate that the proposed method comprehensively improves the performances of two segmentation models at both image and pixel levels on two industrial applications.
READ FULL TEXT