An SPH formulation for general plate and shell structures with finite deformation and large rotation

09/06/2023
by   Dong Wu, et al.
0

In this paper, we propose a reduced-dimensional smoothed particle hydrodynamics (SPH) formulation for quasi-static and dynamic analyses of plate and shell structures undergoing finite deformation and large rotation. By exploiting Uflyand-Mindlin plate theory, the present surface-particle formulation is able to resolve the thin structures by using only one layer of particles at the mid-surface. To resolve the geometric non-linearity and capture finite deformation and large rotation, two reduced-dimensional linear-reproducing correction matrices are introduced, and weighted non-singularity conversions between the rotation angle and pseudo normal are formulated. A new non-isotropic Kelvin-Voigt damping is proposed especially for the both thin and moderately thick plate and shell structures to increase the numerical stability. In addition, a shear-scaled momentum-conserving hourglass control algorithm with an adaptive limiter is introduced to suppress the mismatches between the particle position and pseudo normal and those estimated with the deformation gradient. A comprehensive set of test problems, for which the analytical or numerical results from literature or those of the volume-particle SPH model are available for quantitative and qualitative comparison, are examined to demonstrate the accuracy and stability of the present method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset