Analysis-of-marginal-Tail-Means - a new method for robust parameter optimization

12/10/2017
by   Simon Mak, et al.
0

This paper presents a novel method, called Analysis-of-marginal-Tail-Means (ATM), for parameter optimization over a large, discrete design space. The key advantage of ATM is that it offers effective and robust optimization performance for both smooth and rugged response surfaces, using only a small number of function evaluations. This method can therefore tackle a wide range of engineering problems, particularly in applications where the performance metric to optimize is "black-box" and expensive to evaluate. The ATM framework unifies two parameter optimization methods in the literature: the Analysis-of-marginal-Means (AM) approach (Taguchi, 1986), and the Pick-the-Winner (PW) approach (Wu et al., 1990). In this paper, we show that by providing a continuum between AM and PW via the novel idea of marginal tail means, the proposed method offers a balance between three fundamental trade-offs. By adaptively tuning these trade-offs, ATM can then provide excellent optimization performance over a broad class of response surfaces using limited data. We illustrate the effectiveness of ATM using several numerical examples, and demonstrate how such a method can be used to solve two real-world engineering design problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro