Analysis of Nuclear Norm Regularization for Full-rank Matrix Completion

04/26/2015
by   Moshe Y. Vardi, et al.
0

In this paper, we provide a theoretical analysis of the nuclear-norm regularized least squares for full-rank matrix completion. Although similar formulations have been examined by previous studies, their results are unsatisfactory because only additive upper bounds are provided. Under the assumption that the top eigenspaces of the target matrix are incoherent, we derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix. Our relative upper bound is tighter than previous additive bounds of other methods if the mass of the target matrix is concentrated on its top eigenspaces, and also implies perfect recovery if it is low-rank. The analysis is built upon the optimality condition of the regularized formulation and existing guarantees for low-rank matrix completion. To the best of our knowledge, this is first time such a relative bound is proved for the regularized formulation of matrix completion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset