Analyticity and sparsity in uncertainty quantification for PDEs with Gaussian random field inputs

01/06/2022
by   Dinh Dũng, et al.
0

We establish summability results for coefficient sequences of Wiener-Hermite polynomial chaos expansions for countably-parametric solutions of linear elliptic and parabolic divergence-form partial differential equations with Gaussian random field inputs. The novel proof technique developed here is based on analytic continuation of parametric solutions into the complex domain. It differs from previous works that used bootstrap arguments and induction on the differentiation order of solution derivatives with respect to the parameters. The present holomorphy-based argument allows a unified, "differentiation-free" sparsity analysis of Wiener-Hermite polynomial chaos expansions in various scales of function spaces. The analysis also implies corresponding results for posterior densities in Bayesian inverse problems subject to Gaussian priors on uncertain inputs from function spaces. Our results furthermore yield dimension-independent convergence rates of various constructive high-dimensional deterministic numerical approximation schemes such as single-level and multi-level versions of anisotropic sparse-grid Hermite-Smolyak interpolation and quadrature in both forward and inverse computational uncertainty quantification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset