Anticoncentration versus the number of subset sums
Let w⃗ = (w_1,…, w_n) ∈ℝ^n. We show that for any n^-2≤ϵ≤ 1, if #{ξ⃗∈{0,1}^n: ⟨ξ⃗, w⃗⟩ = r}≥ 2^-ϵ n· 2^n for some r ∈ℝ, then #{⟨ξ⃗, w⃗⟩ : ξ⃗∈{0,1}^n}≤ 2^O(√(ϵ)n). This exponentially improves a recent result of Nederlof, Pawlewicz, Swennenhuis, and Węgrzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.
READ FULL TEXT