ApproxFPGAs: Embracing ASIC-Based Approximate Arithmetic Components for FPGA-Based Systems
There has been abundant research on the development of Approximate Circuits (ACs) for ASICs. However, previous studies have illustrated that ASIC-based ACs offer asymmetrical gains in FPGA-based accelerators. Therefore, an AC that might be pareto-optimal for ASICs might not be pareto-optimal for FPGAs. In this work, we present the ApproxFPGAs methodology that uses machine learning models to reduce the exploration time for analyzing the state-of-the-art ASIC-based ACs to determine the set of pareto-optimal FPGA-based ACs. We also perform a case-study to illustrate the benefits obtained by deploying these pareto-optimal FPGA-based ACs in a state-of-the-art automation framework to systematically generate pareto-optimal approximate accelerators that can be deployed in FPGA-based systems to achieve high performance or low-power consumption.
READ FULL TEXT