Approximate Conditional Sampling for Pattern Detection in Weighted Networks

09/19/2021
by   James A. Scott, et al.
0

Assessing the statistical significance of network patterns is crucial for understanding whether such patterns indicate the presence of interesting network phenomena, or whether they simply result from less interesting processes, such as nodal-heterogeneity. Typically, significance is computed with reference to a null model. While there has been extensive research into such null models for unweighted graphs, little has been done for the weighted case. This article suggests a null model for weighted graphs. The model fixes node strengths exactly, and approximately fixes node degrees. A novel MCMC algorithm is proposed for sampling the model, and its stochastic stability is considered. We show empirically that the model compares favorably to alternatives, particularly when network patterns are subtle. We show how the algorithm can be used to evaluate the statistical significance of community structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset