Assume, Augment and Learn: Unsupervised Few-Shot Meta-Learning via Random Labels and Data Augmentation

02/26/2019
by   Antreas Antoniou, et al.
6

The field of few-shot learning has been laboriously explored in the supervised setting, where per-class labels are available. On the other hand, the unsupervised few-shot learning setting, where no labels of any kind are required, has seen little investigation. We propose a method, named Assume, Augment and Learn or AAL, for generating few-shot tasks using unlabeled data. We randomly label a random subset of images from an unlabeled dataset to generate a support set. Then by applying data augmentation on the support set's images, and reusing the support set's labels, we obtain a target set. The resulting few-shot tasks can be used to train any standard meta-learning framework. Once trained, such a model, can be directly applied on small real-labeled datasets without any changes or fine-tuning required. In our experiments, the learned models achieve good generalization performance in a variety of established few-shot learning tasks on Omniglot and Mini-Imagenet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset