AST-Based Deep Learning for Detecting Malicious PowerShell

10/03/2018
by   Gili Rusak, et al.
0

With the celebrated success of deep learning, some attempts to develop effective methods for detecting malicious PowerShell programs employ neural nets in a traditional natural language processing setup while others employ convolutional neural nets to detect obfuscated malicious commands at a character level. While these representations may express salient PowerShell properties, our hypothesis is that tools from static program analysis will be more effective. We propose a hybrid approach combining traditional program analysis (in the form of abstract syntax trees) and deep learning. This poster presents preliminary results of a fundamental step in our approach: learning embeddings for nodes of PowerShell ASTs. We classify malicious scripts by family type and explore embedded program vector representations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset