Atrous Convolutional Neural Network (ACNN) for Biomedical Semantic Segmentation with Dimensionally Lossless Feature Maps
Deep Convolutional Neural Networks (DCNNs) are showing impressive performances in biomedical semantic segmentation. However, current DCNNs usually use down-sampling layers to achieve significant receptive field increasing and to gain abstract semantic information. These down-sampling layers decrease the spatial dimension of feature maps as well, which is harmful for semantic segmentation. Atrous convolution is an alternative for the down-sampling layer. It could increase the receptive field significantly but also maintain the spatial dimension of feature maps. In this paper, firstly, an atrous rate setting is proposed to achieve the largest and fully-covered receptive field with a minimum number of layers. Secondly, six atrous blocks, three shortcut connections and four normalization methods are explored to select the optimal atrous block, shortcut connection and normalization method. Finally, a new and dimensionally lossless DCNN - Atrous Convolutional Neural Network (ACNN) is proposed with using cascaded atrous II-blocks, residual learning and Fine Group Normalization (FGN). The Right Ventricle (RV), Left Ventricle (LV) and aorta data are used for the validation. The results show that the proposed ACNN achieves comparable segmentation Dice Similarity Coefficients (DSCs) with U-Net, optimized U-Net and the hybrid network, but uses much less parameters. This advantage is considered to benefit from the dimensionally lossless feature maps.
READ FULL TEXT