Attention-Guided Generative Adversarial Network for Whisper to Normal Speech Conversion

11/02/2021
by   Teng Gao, et al.
0

Whispered speech is a special way of pronunciation without using vocal cord vibration. A whispered speech does not contain a fundamental frequency, and its energy is about 20dB lower than that of a normal speech. Converting a whispered speech into a normal speech can improve speech quality and intelligibility. In this paper, a novel attention-guided generative adversarial network model incorporating an autoencoder, a Siamese neural network, and an identity mapping loss function for whisper to normal speech conversion (AGAN-W2SC) is proposed. The proposed method avoids the challenge of estimating the fundamental frequency of the normal voiced speech converted from a whispered speech. Specifically, the proposed model is more amendable to practical applications because it does not need to align speech features for training. Experimental results demonstrate that the proposed AGAN-W2SC can obtain improved speech quality and intelligibility compared with dynamic-time-warping-based methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset