Auction Design through Multi-Agent Learning in Peer-to-Peer Energy Trading

10/20/2021
by   Zibo Zhao, et al.
0

Distributed energy resources (DERs), such as rooftop solar panels, are growing rapidly and are reshaping power systems. To promote DERs, feed-in-tariff (FIT) is usually adopted by utilities to pay DER owners certain fixed rates for supplying energy to the grid. An alternative to FIT is a market-based approach; that is, consumers and DER owners trade energy in an auction-based peer-to-peer (P2P) market, and the rates are determined based on supply and demand. However, the auction complexity and market participants' bounded rationality may invalidate many well-established theories on auction design and hinder market development. To address the challenges, we propose an automated bidding framework based on multi-agent, multi-armed bandit learning for repeated auctions, which aims to minimize each bidder's cumulative regret. Numerical results indicate convergence of such a multi-agent learning game to a steady-state. Being particularly interested in auction designs, we have applied the framework to four different implementations of repeated double-side auctions to compare their market outcomes. While it is difficult to pick a clear winner, k-double auction (a variant of uniform pricing auction) and McAfee auction (a variant of Vickrey double-auction) appear to perform well in general, with their respective strengths and weaknesses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro