Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems
We use the augmented Lagrangian formalism to derive discontinuous Galerkin formulations for problems in nonlinear elasticity. In elasticity stress is typically a symmetric function of strain, leading to symmetric tangent stiffness matrices in Newtons method when conforming finite elements are used for discretization. By use of the augmented Lagrangian framework, we can also obtain symmetric tangent stiffness matrices in discontinuous Galerkin methods. We suggest two different approaches and give examples from plasticity and from large deformation hyperelasticity.
READ FULL TEXT