Auto-Encoding Sequential Monte Carlo
We introduce AESMC: a method for using deep neural networks for simultaneous model learning and inference amortization in a broad family of structured probabilistic models. Starting with an unlabeled dataset and a partially specified underlying generative model, AESMC refines the generative model and learns efficient proposal distributions for SMC for performing inference in this model. Our approach relies on 1) efficiency of SMC in performing inference in structured probabilistic models and 2) flexibility of deep neural networks to model complex conditional probability distributions. We demonstrate that our approach provides a fast, accurate, easy-to-implement, and scalable means for carrying out parameter estimation in high-dimensional statistical models as well as simultaneous model learning and proposal amortization in neural network based models.
READ FULL TEXT