Automated Classification of Helium Ingress in Irradiated X-750
Imaging nanoscale features using transmission electron microscopy is key to predicting and assessing the mechanical behavior of structural materials in nuclear reactors. Analyzing these micrographs is often a tedious and time-consuming manual process, making this analysis is a prime candidate for automation. A region-based convolutional neural network is proposed, which can identify helium bubbles in neutron-irradiated Inconel X-750 reactor spacer springs. We demonstrate that this neural network produces analyses of similar accuracy and reproducibility than that produced by humans. Further, we show this method as being four orders of magnitude faster than manual analysis allowing for generation of significant quantities of data. The proposed method can be used with micrographs of different Fresnel contrasts and resolutions and shows promise in application across multiple defect types.
READ FULL TEXT