Automated design of relocation rules for minimising energy consumption in the container relocation problem
The container relocation problem is a combinatorial optimisation problem aimed at finding a sequence of container relocations to retrieve all containers in a predetermined order by minimising a given objective. Relocation rules (RRs), which consist of a priority function and relocation scheme, are heuristics commonly used for solving the mentioned problem due to their flexibility and efficiency. Recently, in many real-world problems it is becoming increasingly important to consider energy consumption. However, for this variant no RRs exist and would need to be designed manually. One possibility to circumvent this issue is by applying hyperheuristics to automatically design new RRs. In this study we use genetic programming to obtain priority functions used in RRs whose goal is to minimise energy consumption. We compare the proposed approach with a genetic algorithm from the literature used to design the priority function. The results obtained demonstrate that the RRs designed by genetic programming achieve the best performance.
READ FULL TEXT