Automated Reading Passage Generation with OpenAI's Large Language Model

04/10/2023
by   Ummugul Bezirhan, et al.
0

The widespread usage of computer-based assessments and individualized learning platforms has resulted in an increased demand for the rapid production of high-quality items. Automated item generation (AIG), the process of using item models to generate new items with the help of computer technology, was proposed to reduce reliance on human subject experts at each step of the process. AIG has been used in test development for some time. Still, the use of machine learning algorithms has introduced the potential to improve the efficiency and effectiveness of the process greatly. The approach presented in this paper utilizes OpenAI's latest transformer-based language model, GPT-3, to generate reading passages. Existing reading passages were used in carefully engineered prompts to ensure the AI-generated text has similar content and structure to a fourth-grade reading passage. For each prompt, we generated multiple passages, the final passage was selected according to the Lexile score agreement with the original passage. In the final round, the selected passage went through a simple revision by a human editor to ensure the text was free of any grammatical and factual errors. All AI-generated passages, along with original passages were evaluated by human judges according to their coherence, appropriateness to fourth graders, and readability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset