BAGAN: Data Augmentation with Balancing GAN
Image classification datasets are often imbalanced, characteristic that negatively affects the accuracy of deeplearning classifiers. In this work we propose balancing GANs (BAGANs) as an augmentation tool to restore balance in imbalanced datasets. This is challenging because the few minority-class images may not be enough to train a GAN. We overcome this issue by including during training all available images of majority and minority classes. The generative model learns useful features from majority classes and uses these to generate images for minority classes. We apply class-conditioning in the latent space to drive the generation process towards a target class. Additionally, we couple GANs with autoencoding techniques to reduce the risk of collapsing toward the generation of few foolish examples. We compare the proposed methodology with state-of-the-art GANs and demonstrate that BAGAN generates images of superior quality when trained with an imbalanced dataset.
READ FULL TEXT