BANet: Blur-aware Attention Networks for Dynamic Scene Deblurring

01/19/2021
by   Fu-Jen Tsai, et al.
10

Image motion blur usually results from moving objects or camera shakes. Such blur is generally directional and non-uniform. Previous research efforts attempt to solve non-uniform blur by using self-recurrent multi-scale or multi-patch architectures accompanying with self-attention. However, using self-recurrent frameworks typically leads to a longer inference time, while inter-pixel or inter-channel self-attention may cause excessive memory usage. This paper proposes blur-aware attention networks (BANet) that accomplish accurate and efficient deblurring via a single forward pass. Our BANet utilizes region-based self-attention with multi-kernel strip pooling to disentangle blur patterns of different degrees and with cascaded parallel dilated convolution to aggregate multi-scale content features. Extensive experimental results on the GoPro and HIDE benchmarks demonstrate that the proposed BANet performs favorably against the state-of-the-art in blurred image restoration and can provide deblurred results in realtime.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset