Base Station Antenna Selection for Low-Resolution ADC Systems

06/30/2019
by   Jinseok Choi, et al.
0

This paper investigates antenna selection at a base station with large antenna arrays and low-resolution analog-to-digital converters. For downlink transmit antenna selection for narrowband channels, we show (1) a selection criterion that maximizes sum rate with zero-forcing precoding equivalent to that of a perfect quantization system; (2) maximum sum rate increases with number of selected antennas; (3) derivation of the sum rate loss function from using a subset of antennas; and (4) unlike high-resolution converter systems, sum rate loss reaches a maximum at a point of total transmit power and decreases beyond that point to converge to zero. For wideband orthogonal-frequency-division-multiplexing (OFDM) systems, our results hold when entire subcarriers share a common subset of antennas. For uplink receive antenna selection for narrowband channels, we (1) generalize a greedy antenna selection criterion to capture tradeoffs between channel gain and quantization error; (2) propose a quantization-aware fast antenna selection algorithm using the criterion; and (3) derive a lower bound on sum rate achieved by the proposed algorithm based on submodular functions. For wideband OFDM systems, we extend our algorithm and derive a lower bound on its sum rate. Simulation results validate theoretical analyses and show increases in sum rate over conventional algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset