Bayesian A/B Testing for Business Decisions

03/05/2020
by   Shafi Kamalbasha, et al.
0

Controlled experiments (A/B tests or randomized field experiments) are the de facto standard to make data-driven decisions when implementing changes and observing customer responses. The methodology to analyze such experiments should be easily understandable to stakeholders like product and marketing managers. Bayesian inference recently gained a lot of popularity and, in terms of A/B testing, one key argument is the easy interpretability. For stakeholders, "probability to be best" (with corresponding credible intervals) provides a natural metric to make business decisions. In this paper, we motivate the quintessential questions a business owner typically has and how to answer them with a Bayesian approach. We present three experiment scenarios that are common in our company, how they are modeled in a Bayesian fashion, and how to use the models to draw business decisions. For each of the scenarios, we present a real-world experiment, the results and the final business decisions drawn.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro