Bayesian analysis of diffusion-driven multi-type epidemic models with application to COVID-19

11/28/2022
by   Lampros Bouranis, et al.
0

We consider a flexible Bayesian evidence synthesis approach to model the age-specific transmission dynamics of COVID-19 based on daily age-stratified mortality counts. The temporal evolution of transmission rates in populations containing multiple types of individual are reconstructed via an appropriate dimension-reduction formulation driven by independent diffusion processes assigned to the key epidemiological parameters. A suitably tailored Susceptible-Exposed-Infected-Removed (SEIR) compartmental model is used to capture the latent counts of infections and to account for fluctuations in transmission influenced by phenomena like public health interventions and changes in human behaviour. We analyze the outbreak of COVID-19 in Greece and Austria and validate the proposed model using the estimated counts of cumulative infections from a large-scale seroprevalence survey in England.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset