Bayesian Image-on-Scalar Regression with a Spatial Global-Local Spike-and-Slab Prior

09/17/2022
by   Zijian Zeng, et al.
0

In this article, we propose a novel spatial global-local spike-and-slab selection prior for image-on-scalar regression. We consider a Bayesian hierarchical Gaussian process model for image smoothing, that uses a flexible Inverse-Wishart process prior to handle within-image dependency, and propose a general global-local spatial selection prior that extends a rich class of well-studied selection priors. Unlike existing constructions, we achieve simultaneous global (i.e, at covariate-level) and local (i.e., at pixel/voxel-level) selection by introducing `participation rate' parameters that measure the probability for the individual covariates to affect the observed images. This along with a hard-thresholding strategy leads to dependency between selections at the two levels, introduces extra sparsity at the local level, and allows the global selection to be informed by the local selection, all in a model-based manner. We design an efficient Gibbs sampler that allows inference for large image data. We show on simulated data that parameters are interpretable and lead to efficient selection. Finally, we demonstrate performance of the proposed model by using data from the Autism Brain Imaging Data Exchange (ABIDE) study. To the best of our knowledge, the proposed model construction is the first in the Bayesian literature to simultaneously achieve image smoothing, parameter estimation and a two-level variable selection for image-on-scalar regression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset