Bayesian Parameter Inference for Partially Observed SDEs driven by Fractional Brownian Motion
In this paper we consider Bayesian parameter inference for partially observed fractional Brownian motion (fBM) models. The approach we follow is to time-discretize the hidden process and then to design Markov chain Monte Carlo (MCMC) algorithms to sample from the posterior density on the parameters given data. We rely on a novel representation of the time discretization, which seeks to sample from an approximation of the posterior and then corrects via importance sampling; the approximation reduces the time (in terms of total observation time T) by O(T). This method is extended by using a multilevel MCMC method which can reduce the computational cost to achieve a given mean square error (MSE) versus using a single time discretization. Our methods are illustrated on simulated and real data.
READ FULL TEXT