Belief Propagation Decoding of Polar Codes on Permuted Factor Graphs
We show that the performance of iterative belief propagation (BP) decoding of polar codes can be enhanced by decoding over different carefully chosen factor graph realizations. With a genie-aided stopping condition, it can achieve the successive cancellation list (SCL) decoding performance which has already been shown to achieve the maximum likelihood (ML) bound provided that the list size is sufficiently large. The proposed decoder is based on different realizations of the polar code factor graph with randomly permuted stages during decoding. Additionally, a different way of visualizing the polar code factor graph is presented, facilitating the analysis of the underlying factor graph and the comparison of different graph permutations. In our proposed decoder, a high rate Cyclic Redundancy Check (CRC) code is concatenated with a polar code and used as an iteration stopping criterion (i.e., genie) to even outperform the SCL decoder of the plain polar code (without the CRC-aid). Although our permuted factor graph-based decoder does not outperform the SCL-CRC decoder, it achieves, to the best of our knowledge, the best performance of all iterative polar decoders presented thus far.
READ FULL TEXT