BERT-ERC: Fine-tuning BERT is Enough for Emotion Recognition in Conversation

01/17/2023
by   Xiangyu Qin, et al.
12

Previous works on emotion recognition in conversation (ERC) follow a two-step paradigm, which can be summarized as first producing context-independent features via fine-tuning pretrained language models (PLMs) and then analyzing contextual information and dialogue structure information among the extracted features. However, we discover that this paradigm has several limitations. Accordingly, we propose a novel paradigm, i.e., exploring contextual information and dialogue structure information in the fine-tuning step, and adapting the PLM to the ERC task in terms of input text, classification structure, and training strategy. Furthermore, we develop our model BERT-ERC according to the proposed paradigm, which improves ERC performance in three aspects, namely suggestive text, fine-grained classification module, and two-stage training. Compared to existing methods, BERT-ERC achieves substantial improvement on four datasets, indicating its effectiveness and generalization capability. Besides, we also set up the limited resources scenario and the online prediction scenario to approximate real-world scenarios. Extensive experiments demonstrate that the proposed paradigm significantly outperforms the previous one and can be adapted to various scenes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset