Betweenness of partial orders
We construct a monadic second-order sentence that characterizes the ternary relations that are the betweenness relations of finite or infinite partial orders. We prove that no first-order sentence can do that. We characterize the partial orders that can be reconstructed from their betweenness relations. We propose a polynomial time algorithm that tests if a finite relation is the be-tweenness of a partial order.
READ FULL TEXT