Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases
When answering natural language questions over knowledge bases (KB), different question components and KB aspects play different roles. However, most existing embedding-based methods for knowledge base question answering (KBQA) ignore the subtle inter-relationships between the question and the KB (e.g., entity types, relation paths and context). In this work, we propose to directly model the two-way flow of interactions between the questions and the underlying KB via a novel two-layered bidirectional attention network, called BAMnet. Without requiring any external resources or hand-crafted features, on the WebQuestions benchmark, our method significantly outperforms existing information-retrieval based methods, and remains competitive with (hand-crafted) semantic parsing based methods. Also, since we use attention mechanisms, our method offers better interpretability compared to other baselines.
READ FULL TEXT