Big Ramsey degrees using parameter spaces
We show that the universal homogeneous partial order has finite big Ramsey degrees and discuss several corollaries. Our proof uses parameter spaces and the Carlson-Simpson theorem rather than (a strengthening of) the Halpern-Läuchli theorem and the Milliken tree theorem, which are the primary tools used to give bounds on big Ramsey degrees elsewhere (originating from work of Laver and Milliken). This new technique has many additional applications. To demonstrate this, we show that the homogeneous universal triangle-free graph has finite big Ramsey degrees, thus giving a short proof of a recent result of Dobrinen.
READ FULL TEXT