Bitcoin Security under Temporary Dishonest Majority
We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We demand a majority of honest online participants on expectation. We explore three different models and present the requirements for proving Bitcoin's security in all of them: we first examine a synchronous model, then extend to a bounded delay model and last we consider a synchronous model that allows message losses.
READ FULL TEXT