BJTU-WeChat's Systems for the WMT22 Chat Translation Task
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English-German. Based on the Transformer, we apply several effective variants. In our experiments, we utilize the pre-training-then-fine-tuning paradigm. In the first pre-training stage, we employ data filtering and synthetic data generation (i.e., back-translation, forward-translation, and knowledge distillation). In the second fine-tuning stage, we investigate speaker-aware in-domain data generation, speaker adaptation, prompt-based context modeling, target denoising fine-tuning, and boosted self-COMET-based model ensemble. Our systems achieve 0.810 and 0.946 COMET scores. The COMET scores of English-German and German-English are the highest among all submissions.
READ FULL TEXT