Block shuffling learning for Deepfake Detection
Although the deepfake detection based on convolutional neural network has achieved good results, the detection results show that these detectors show obvious performance degradation when the input images undergo some common transformations (like resizing, blurring), which indicates that the generalization ability of the detector is insufficient. In this paper, we propose a novel block shuffling learning method to solve this problem. Specifically, we divide the images into blocks and then introduce the random shuffling to intra-block and inter-block. Intra-block shuffling increases the robustness of the detector and we also propose an adversarial loss algorithm to overcome the over-fitting problem brought by the noise introduced by shuffling. Moreover, we encourage the detector to focus on finding differences among the local features through inter-block shuffling, and reconstruct the spatial layout of the blocks to model the semantic associations between them. Especially, our method can be easily integrated with various CNN models. Extensive experiments show that our proposed method achieves state-of-the-art performance in forgery face detection, including good generalization ability in the face of common image transformations.
READ FULL TEXT