Boosted Generative Models
We propose a new approach for using unsupervised boosting to create an ensemble of generative models, where models are trained in sequence to correct earlier mistakes. Our meta-algorithmic framework can leverage any existing base learner that permits likelihood evaluation, including recent latent variable models. Further, our approach allows the ensemble to include discriminative models trained to distinguish real data from model-generated data. We show theoretical conditions under which incorporating a new model in the ensemble will improve the fit and empirically demonstrate the effectiveness of boosting on density estimation and sample generation on synthetic and benchmark real datasets.
READ FULL TEXT