Boosting Low-Data Instance Segmentation by Unsupervised Pre-training with Saliency Prompt

02/02/2023
by   Hao Li, et al.
0

Recently, inspired by DETR variants, query-based end-to-end instance segmentation (QEIS) methods have outperformed CNN-based models on large-scale datasets. Yet they would lose efficacy when only a small amount of training data is available since it's hard for the crucial queries/kernels to learn localization and shape priors. To this end, this work offers a novel unsupervised pre-training solution for low-data regimes. Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models by giving Saliency Prompt for queries/kernels. Our method contains three parts: 1) Saliency Masks Proposal is responsible for generating pseudo masks from unlabeled images based on the saliency mechanism. 2) Prompt-Kernel Matching transfers pseudo masks into prompts and injects the corresponding localization and shape priors to the best-matched kernels. 3) Kernel Supervision is applied to supply supervision at the kernel level for robust learning. From a practical perspective, our pre-training method helps QEIS models achieve a similar convergence speed and comparable performance with CNN-based models in low-data regimes. Experimental results show that our method significantly boosts several QEIS models on three datasets. Code will be made available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset