Boosting Uncertainty Estimation for Deep Neural Classifiers
We consider the problem of uncertainty estimation in the context of (non-Bayesian) deep neural classification. All current methods are based on extracting uncertainty signals from a trained network optimized to solve the classification problem at hand. We demonstrate that such techniques tend to misestimate instances whose predictions are supposed to be highly confident. This deficiency is an artifact of the training process with SGD-like optimizers. Based on this observation, we develop an uncertainty estimation algorithm that "peels away" highly confident points sequentially and estimates their confidence using earlier snapshots of the trained model, before their uncertainty estimates are jittered. We present extensive experiments indicating that the proposed algorithm provides uncertainty estimates that are consistently better than the best known methods.
READ FULL TEXT